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Background
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• What are the causes behind each user-item interaction?

There are two main causes:
• Interest
• Conformity

a best-seller

buy buy

high sales tire, speed, ….

• How users tend to follow other people

Goal: Learn disentangled representations for interest and conformity



Motivation
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• Why learning disentangled representations?
• Causal recommendation under non-IID situations!
• IID: independent and identically distributed

• Robustness
• Recommenders are trained and updated in real-time
• Training data and test data are not IID

• Interpretability
• Improve user-friendliness
• Facilitates algorithm developing

training data test data

representation



Causal Recommendation
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• Inverse Propensity Scoring (IPS)[1]

propensity
score

• Propensity score is estimated from item popularity
• Intuition: impose lower weights on popular items, and
boost unpopular items
• Interest and popularity are bundled as one unified
representation

Two factors are entangled!
[1] Yang, L., Cui, Y., Xuan, Y., Wang, C., Belongie, S., & Estrin, D. (2018, September). Unbiased offline recommender 
evaluation for missing-not-at-random implicit feedback. In Proceedings of the 12th ACM Conference on Recommender 
Systems (pp. 279-287).



Causal Recommendation
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• Causal Embeddings (CausE)[1]

• Require a large fraction of biased data and a small fraction
of unbiased data
• Perform two MF on biased and unbiased data, respectively
• Impose L1/L2 regularization on two MF

MF on small
unbiased data

MF on large
biased data

regularization
on two MF

Still entangled representations!

[1] Bonner, S., & Vasile, F. (2018, September). Causal embeddings for recommendation. In Proceedings of the 12th ACM 
conference on recommender systems (pp. 104-112).



• Variety of conformity
• Conformity depends on both users and items
• One user’s conformity varies on different items, and 

conformity towards one item varies for different users

• Learning disentangled representations is intrinsically hard
• Only observational data is accessible.
• No ground-truth for user interest.

• An interaction can come from one or both factor
• Careful designs are needed for combining the two factors to

make recommendations.

Disentangling interest and conformity
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Methodology: Our DICE Model

• Disentangling Interest and Conformity with Causal 
Embedding (DICE)

• Challenge 1: Variety of conformity
• Our proposal: Adopt separate embeddings of interest 

and conformity for users and items 
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• Benefit 1: Embedding 
proximity in high dimensional 
space can express the variety 
of conformity (challenge 1 
addressed)

• Benefit 2: Independent 
modeling of interest and 
conformity

interest
embedding

conformity
embedding

user item



Methodology: Our DICE Model

• Disentangling Interest and Conformity with Causal 
Embedding (DICE)

• Challenge 2: Learning disentangled representations is 
intrinsically hard

• Our proposal: Utilize the colliding effect from causal 
inference to obtain cause-specific data.
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Intuition: 
Train interest/conformity 
embeddings with interactions 
that are caused by 
interest/conformity



Methodology: Our DICE Model

• Disentangling Interest and Conformity with Causal 
Embedding (DICE)

• Challenge 3: Aggregation of the two factors is complicated
• Our proposal: Leverage multi-task curriculum learning to 

combine the two causes.
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interest
embedding

conformity
embedding

user item
discrepancy

loss

conformity
loss

interest
loss

click
loss

concat

(a) Causal Graph (b) Causal Embedding



Methodology: Our DICE Model

• Disentangling Interest and Conformity with Causal 
Embedding (DICE)

• Causal Embedding
• Disentangled Representation Learning
• Multi-task Curriculum Learning
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(a) Causal Graph (b) Causal Embedding



Methodology: Our DICE Model

• Causal graph and Structural Causal Model (SCM)
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(a) Causal Graph (b) Causal Embedding

causal graph

SCM



Methodology: Our DICE Model

• Causal embedding
• Separate embeddings for interest and conformity

• User: 𝑢(𝑖𝑛𝑡), 𝑢(con)

• Item: 𝑖(𝑖𝑛𝑡), 𝑖(con)

• Use inner product to compute matching score
• Predict click by combining two causes
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(a) Causal Graph (b) Causal Embedding



Methodology: Our DICE Model

• Mining cause-specific data with causal inference
• Immorality and collider
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A B

C

• Colliding effect
• A and B are independent
• A and B are NOT independent when conditioned on C

immorality

collider



Methodology: Our DICE Model

• Mining cause-specific data with causal inference
• e.g. 

• A: whether a student is talented
• B: whether a student is hard-working
• C: whether a student passes an exam
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A B

C

• Bob passes the exam, and Bob is not talented

He is hard-working with high probability

• Alice doesn’t pass the exam, and Alice is talented

She is most likely not hard-working



Methodology: Our DICE Model

• Mining cause-specific data with causal inference
• The colliding effect can come to help!
• Click is the collider of interest and conformity!
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interest
embedding

conformity
embedding

user item
discrepancy

loss

conformity
loss

interest
loss

click
loss

concat

(a) Causal Graph (b) Causal Embedding• Use popularity as a proxy for conformity
• A clicked item with low popularity

high interest
• An unclicked item with high popularity

low interest



Methodology: Our DICE Model

• Notation
• 𝑀𝐼 : interest matching probability matrix
• 𝑀𝐶 : conformity matching probability matrix

16

Case 1: 𝑢 clicks a popular item 𝑎, doesn’t click an 
unpopular item 𝑏

Case 2: 𝑢 clicks an unpopular item 𝑐, doesn’t click a
popular item 𝑑



Methodology: Our DICE Model
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• 𝒪 : whole training set (𝑢, 𝑖, 𝑗): user, pos item, neg item
• 𝒪1: negative samples more popular than positive samples
• 𝒪2: negative samples less popular than positive samples

𝒪 = 𝒪1 + 𝒪2
𝒪1 𝒪2

Solution: train different embeddings 
with different cause-specific data
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Methodology: Our DICE Model

• Main task: estimating clicks
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𝒪1 𝒪2



Methodology: Our DICE Model

• Interest modeling
• Only use interest embedding
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Methodology: Our DICE Model

• Conformity modeling
• Only use conformity embedding
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𝒪1 𝒪2
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Methodology: Our DICE Model

• Discrepancy task
• direct supervision on disentanglement
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• L1-inv: −𝐿1(Ε 𝑖𝑛𝑡 , Ε 𝑐𝑜𝑛 )

• L2-inv: −𝐿2(Ε 𝑖𝑛𝑡 , Ε 𝑐𝑜𝑛 )

• distance correlation:

𝑑𝐶𝑜𝑟 Ε 𝑖𝑛𝑡 , Ε 𝑐𝑜𝑛 =
𝑑𝐶𝑜𝑣(Ε 𝑖𝑛𝑡 , Ε 𝑐𝑜𝑛 )

𝑑𝑉𝑎𝑟(Ε 𝑖𝑛𝑡 ) ∙ 𝑑𝑉𝑎𝑟(Ε 𝑐𝑜𝑛 )
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Methodology: Our DICE Model

• Multi-task learning
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• Popularity based Negative Sampling with Margin (PNSM)
• Popularity of the positive item: 𝑝
• Sample negative items with popularity:

• Larger than 𝑝 + 𝑚
• Lower than 𝑝 −𝑚

• Large 𝑚: high confidence on inequalities, easy
• Small 𝑚: low confidence on inequalities, hard

• Curriculum learning: an easy-to-hard strategy
• decay 𝑚, 𝛼 and 𝛽 by a factor of 0.9 after each epoch



Experiments
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• Datasets:
• Movielens-10M
• Netflix

• Evaluation: non-IID protocol (same with CausE[1]):
• Train: 60% normal+ 10% intervened
• Validation: 10% intervened
• Test: 20% intervened

• Metrics:
• Recall, Hit Ratio, NDCG

• Recommendation models
• MF[2]

• LightGCN[3]

[1] Bonner, S., & Vasile, F. (2018, September). Causal embeddings for recommendation. In Proceedings of the 12th ACM conference on 
recommender systems (pp. 104-112).
[2] Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). BPR: Bayesian personalized ranking from implicit feedback. arXiv
preprint arXiv:1205.2618.
[3] He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020, July). Lightgcn: Simplifying and powering graph convolution network for 
recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 
639-648).



Experiments
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• RQ1: How does our proposed DICE framework perform 
compared with state-of-the-art causal recommendation 
methods under non-IID circumstances? 

• RQ2: Can the proposed DICE framework guarantee 
interpretability? 

• RQ3: Can the proposed DICE framework guarantee 
robustness? 



Experiments
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• Overall Comparison



Experiments
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• Observations

• Our proposed DICE framework outperforms baselines 
with significant improvements with respect to all 
metrics on both datasets.



Experiments
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• DICE is a highly general framework which can be 
combined with various recommendation models.

• Observations



Experiments
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• Interpretability

• Conformity embeddings of items with different 
popularity form layers.



Experiments
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• Interest embeddings of items with different 
popularity are uniformly distributed in the space.

• Interpretability



Experiments

3030

• Conformity embeddings largely captures conformity, 
and interest embeddings squeeze out conformity

• Interpretability



Experiments

3131

• Robustness

• Test data with different strength of intervention
• DICE is more robust than IPS based method under 

different levels of intervention



Conclusion and Future Work
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• We propose to learn disentangled representations of user 
interest and conformity for recommendation with tools of 
causal inference. A general framework DICE is developed 
which shows great robustness and interpretability under 
non-IID situations.

• Future work
• Extend DICE to incorporate more features.
• Learn disentangled representations for finer-grained user 

interest, e.g. price preference, brand preference…
• Codes can be found at: https://github.com/tsinghua-fib-

lab/DICE

https://github.com/tsinghua-fib-lab/DICE


Thanks for listening!
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Contact: liyong07@tsinghua.edu.cn
Lab Info: http://fi.ee.tsinghua.edu.cn


